

LA-UR-19-26149

Approved for public release; distribution is unlimited.

Title: Collimated Beams for Cement Evaluation

Author(s): Pantea, Cristian

Intended for: Report

Issued: 2019-06-28

Collimated Beams for Cement Evaluation

Cristian Pantea

Chevron 27 Jun 2019

Cristian Pantea

Team Leader

Acoustics and Sensors Team

http://www.lanl.gov/orgs/mpa/mpa11/AcousticsAndSensorsTeam

Vamshi Chillara

Research Scientist

Electric Impedance Spectroscopy (Chevron)

Well Integrity Monitoring

Acoustic Separation

CO₂ sequestration (DOE)

uarchitected Wavequides (LDRD-ECR)

Craig Chavez:

Research Technologist

Mechanical and Electronics

Design, and System Configuration

John Greenhall

Postdoc
Machine Learning
3DHEAT
Defects in Thermoelectric Wafers
Welding inspection
Electronics design

Eric Davis

Postdoc
Well Integrity Monitoring
CO₂ sequestration (DOE)
D₂O content in heavy water
3DHEAT

Acoustic Monitoring of Pu NDE of weapons components

Hung Doan

Karl Niendorf

Postdoc
Corn stover acoustics sensor
Well Integrity Monitoring

Dipen Sinha

Visiting Scientist
Defects detectionThermoel Wafers
Welding inspection
NDE of weapons components
Electronics design

Kai Gao

Postdoc
Well Integrity Monitoring
CO₂ sequestration (DOE)
Reverse time migration
3D inversion

n (DOE)
ration

Sincheng Huang

Summer GRA
COMSOL programming
Acoustic Tomography
Waveform inversion
Well Integrity Monitoring

Alan Graham

Research Associate
Defects detection in wafe
Welding inspection
NDE of weapons compor

Post-Master
Corn stover acoustics
Well Integrity

TBD

Summer GRA
Instrumentation development
LabView programming
D₂O content in heavy water

Collimated Beams for Cement Evaluation

Extend applicability to: (1) casing-cement interface, (2) cement-formation interface, and (3) out in the formation (up to \sim 3 meters).

Comparison of existing techniques and the present approach

Method	Frequency (kHz)	Range (m)	Resolution (mm)
Sonic probe	0.3-8	15	~ 300
ACCObeam	10-250	~ 3	~ 5
Ultrasonic probe	>250	casing	4-5

ACCObeam Acoustic Collimated Beam

Novel sound beam:

High-power Low-frequency Collimated resulting in

Deeper penetration + High resolution

Fluid-filled borehole

Receiver array

Rotating Acoustic Transducer

Acoustic beam

Low frequency Collimated beam

360 degree imaging

No side-lobes

Multiple areas of applications, e.g. borehole imaging, explosives threat evaluation, underwater communication, biomedical imaging.

Proposed Approach:

Detect objects underwater, using a low-frequency, collimated beam.

ACCObeam

Bessel-like Acoustic Source

Radial mode

ACCObeam

Fundamental mode

Radial Modes of Acoustic Transducer

Comparison of analytical and experimentally obtained out-of-plane displacement patterns of the radial modes

Comparison of analytical and experimentally obtained beam profiles from the radial modes

Paper recently submitted

Radial Modes of Acoustic Transducer Clamping Effect

for different lateral stiffness k 400 mm

Ultrasonic beam profiles in water generated by RM-3 at 161.8 kHz

Normalized out-of-plane displacement on the surface of the disc for RM-3 for different lateral stiffness k (N/m3)

and

400 mm Free

Clamped

Wave Motion, vol. 76, (2018), pp. 19-27

Proceedings of SPIE, vol. 10170, (2017), Article no. 1017024

UNCLASSIFIED

Clamping Effect – Experimental evidence

Beam profile in water for the 3rd radial mode RM-3; free transducer (left) and clamped transducer (right)

Clamping Effect – Experimental evidence

- Collimated beam provides:
 - Reduction in beam width → higher image resolution, more control over directivity
 - Increased beam length → longer detection range UNCLASSIFIED

ACCObeam - Defects detection

Cased borehole configuration (Steel-lined cement barrel) Reflection seismology – Common receiver representation

Cement OD: 460 mm Cement ID:170 mm Steel pipe ID: 148 mm Steel pipe thickness: 10 mm Groove depth: 50 mm Plastic pipe location: 25 mm

ACCObeam - Defects detection

Steel casing barrel – Bessel-like Source

ACCObeam - Acoustic Inversion and Imaging

Velocity model for the long-radius profile from acoustic inversion using (a) 29 kHz data, (b) 42.4 kHz data, (c) 58 kHz data, and (d) 111.85 kHz data.

ACCObeam – Very Fresh Data. Work in progress

Well Integrity

In subsurface applications, such as Oil & Gas, Geothermal, Carbon Sequestration, Nuclear Repositories

Experimental concrete barrel with LANL's 3D imaging prototype in a borehole located at the center of the concrete barrel

Summary

- No commercial acoustic sources that provide a collimated beam over a frequency range of 10–250 kHz in a small package that works in different media
- Recently improved acoustic source ACCObeam: much more powerful than its predecessor (which was based on nonlinear acoustics)
- Demonstrated imaging capabilities of the system, in both openand cased-borehole, for different induced defects (groove, detachment, fluid-filled void pocket, casing).
- Future R&D:
 - Refine and enhance the capabilities of the 3D imaging system for more realistic environments, and extended investigation range beyond the wellbore casing.
 - Identify new applications.

Low-Frequency Acoustic Collimated Beam -Selected Publications-

- Ultrasonics, 2019, v. 96, issue 7, p. 140
- Appl. Phys. Lett., 2018, v. 113, issue 7, p. 071903
- Wave Motion, 2018, vol. 76, p. 19-27
- Appl. Phys. Lett., 2017, v. 110, issue 6, p. 064101
- Proceedings of SPIE, 2017, v. 10170, p. 1017024

- 1 patent application(Resonance-based Nonlinear Source)
- 1 patent application (Bessel-like Acoustic Source)
- 1 provisional patent (Imaging Technique with Low-frequency Beam)

